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1. Introduction

Sand30 is a major gas - condensate reservoir in Hai 
Thach field. This reservoir has one exploration well and 
three production wells with very different production 
performance [1]. Many studies have been conducted to 
better understand, characterise and model Sand30 [1 - 4]. 
Reservoir extent and lithofacies distribution are the main 
focus of the current study.
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Machine learning has been shown to be capable of 
complementing and elevating human analysis by objec-
tively examining input data and automatically repeating 
the calculation until the best output is determined. Be-
cause of this benefit, machine learning has been widely 
used in recent years in the oil and gas business, such as for 
lithofacies classification [5 - 7], depositional facies predic-
tion [8, 9], well log correlation [10, 11], seismic facies clas-
sification [12, 13], and seismic facies analysis [14].

In this study, supervised machine learning was used 
to predict lithofacies using classification techniques in-
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and base of reservoir were orbitally extracted on 4 wells to create the datasets. Cross-validation and grid search were also implemented 
on the best four algorithms to optimise the hyper-parameters for each algorithm and avoid overfitting during training. Finally, confusion 
matrix and accuracy scores were exploited to determine the ultimate model for discrete lithofacies prediction. The machine learning models 
were applied to predict lithofacies for a complex reservoir in an area of 163 km2.

From the perspective of classification, the random forest method achieved the highest accuracy score of 0.907 compared to support 
vector machine (0.896), K-nearest neighbours (0.895), and decision tree (0.892). At well locations, the correlation factor was excellent 
with 0.88 for random forest results versus sand thickness. In terms of sand and shale distribution, the machine learning outputs 
demonstrated geologically reasonable results, even in undrilled regions and reservoir boundary areas.

Key words: Lithofacies classification, reservoir characterisation, seismic attributes, supervised machine learning, Nam Con Son basin.

Date of receipt: 15/5/2022. Date of review and editing: 15/5 - 23/6/2022.  
Date of approval: 27/6/2022.

PETROVIETNAM JOURNAL
Volume 6/2022, pp. 27 - 35
ISSN 2615-9902



28 PETROVIETNAM - JOURNAL VOL 6/2022    

PETROLEUM EXPLORATION & PRODUCTION

cluding decision tree, support vector machine, and ran-
dom forest, etc. There are five steps in the overall work-
flow for this investigation, as shown in Figure 1. First, all 
seismic data from 5 inversion cubes, including acoustic 
impedance (AI), Lambda-Rho (LR), Mu-Rho (MR), density, 
and compressional wave to shear wave velocity ratio 
(VpVs), were recovered from within 25 m of 4 drilled holes. 
They were also classified into two groups based on well 
log data: reservoir and non-reservoir. To ensure that data 

Figure 2. Results of seismic well tie.

Figure 1. Overall workflow.

was labelled correctly, seismic well ties were meticulously 
conducted. Second, those seismic data were thoroughly 
examined in order to determine whether or not they were 
related to facies data. Only seismic data with a good cor-
relation with facies was employed as a training dataset for 
machine learning. Third, the supervised machine learning 
was used to determine the best models from the data. 
Fourth, those models were applied to predict lithofacies 
for the whole reservoir. Finally, the anticipated facies were 
retrieved from the map or raw data and compared to the 
well or present inversion seismic data to assess their qual-
ity and reliability.

2. Data generation and visualisation

The input data included available well logs from four 
drilled holes and five seismic inversion cubes. Well logs in-
cluded gamma ray, interpreted facies logs used for zona-
tion and facies classification, density and sonic used for 
seismic well tie. All well data were carefully checked be-
fore making the seismic well tie. The purpose of this step 
was to ensure that all the seismic data and well logs were 
consistent, as shown in Figure 2.

Five seismic inversion cubes were then exported us-
ing orbital extraction (Figure 3) with radius of 25 m, which 
corresponds to the minimum seismic bin size and there-
fore the best input for obtaining the most reasonable cor-
relation between well log data and seismic data. Because 

Extract seismic data 25 m around wellbore and label them.

Check relationship between these data and facies. Only data with good 
relationship were selected for machine learning.

Run multiple machine learning algorithms. Only top 4 methods are chosen 
for next stage.

Use selected machine learning models to predict facies for whole reservoir.

Extract data from machine learning cubes and cross check with well data.

WELL HT1 WELL HT2 WELL HT3 WELL HT4
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the extraction takes the average of nearby grid values, the 
extraction radius should not be less than the minimum 
bin size in order to avoid skipping the surrounding well-
bore information. On the other hand, the depth of inves-
tigation of well logging tools is very close to the wellbore 
wall, only a few centimetres to metres beyond the wall; 

thus, the smaller the extraction radius, the better the cor-
relation. Some trials with extraction radius larger than 25 
m were also carried out; however, the achieved correla-
tion was degraded. The studied interval included reser-
voir interval and 25 m above the top and below the base 
of reservoir (half of average reservoir thickness of 50 m) 
which is considered the best representative for facies ra-
tio of reservoir/non-reservoir samples. Before being used 
for machine learning, these data were conditioned and 
tagged with facies (reservoir and non-reservoir) using the 
seismic well tie results (Figure 2). The extracted dataset 
comprised of a total of 5,515 valid samples, and reservoir 
to non-reservoir facies ratio was approximately 3:4.

Density curve histograms and heat map were used to 
determine which qualities were the most related to facies. 
The best markers for facies indication in this study were 
Lambda-Rho, VpVs, and Mu-Rho. There was relatively clear 
separation between reservoir and non-reservoir facies in 
those curves but not for acoustic impedance (Zp) and 
density (Den) (Figure 4). Similarly, the heat map results 
which showed correlation between seismic properties 
and facies also revealed the same conclusion by correla-
tion factor (0.7 for Lambda-Rho and VpVs, and 0.47 for 
Mu-Rho) (Figure 5). For those reasons, only 3 properties 
Lambda-Rho, VpVs and Mu-Rho were used as inputs for 
machine learning in the next step.

Figure 4. Density curve histogram for seismic attributes.

Figure 3. Orbital extraction.
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3. Machine learning approach

True positive (TP), true negative (TN), false positive 
(FP), and false negative (FN) are the four categories of 
prediction outcomes used in this study. True negative de-
notes that models correctly predict non-reservoir facies, 
while true positive says that reservoir facies are accurately 
predicted. On the other hand, there are two kinds of er-
rors that could be encountered: false positive and false 
negative. False positive means facies that are predicted 
to be reservoirs but are actually non-reservoirs, whereas 
false negative represents facies that are predicted to be 
non-reservoirs but are actually reservoirs. Both error types 
reduce model accuracy, but in terms of HIIP calculation, 
the false positive type error is more severe than the false 
negative type because it can result in an overestimation 

of reservoir facies, which is the main contributor to HIIP. 
As a result, low false positive error is one of the most im-
portant factors for model selection. The following formula 
was used to compute the accuracy score:

Accuracy score=(True positive+True negative)/Total

At the beginning of the study, many supervised clas-
sification algorithms were investigated, including logistic 
regression, Gaussian Naïve Bayes, Bernoulli Naïve Bayes, 
multinomial Naïve Bayes, linear discriminant analysis, 
support vector machine, K-nearest neighbours, decision 
tree, and random forest, as shown in Table 1, to find the 
best four algorithms based on the accuracy score for lat-
ter stage.

At the second stage, only the top four algorithms 
were selected to build the model. At this stage, cross 

Figure 5. Heat map for 5 seismic properties versus facies.
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Method Accuracy on training set Accuracy on test set 
K-nearest neighbours 0.94 0.92 

Decision tree classi�er 1.00 0.90 
Support vector machine 0.90 0.90 

Random forest 0.88 0.87 
Logistic regression classi�er 0.87 0.86 

Bernoulli classi�er 0.87 0.86 
Linear discriminant analysis 0.87 0.86 

Gaussian Naïve Bayes 0.86 0.86 

Table 1. Accuracy score of facies prediction
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validation and GridSearchCv technique were used to opti-
mise hyper-parameters and avoid overfitting.

For cross validation, the test data would be kept sepa-
rate and reserved for the final evaluation step to check the 
"reaction" of the model when encountering completely 
unseen data. The training data would be randomly di-
vided into K parts (K is an integer, usually either 5 or 10). 
The model would be trained K times, each time one part 
would be chosen as validation data and K-1 parts as train-
ing data. The final model evaluation results would be the 
average of the evaluation results of K training times. With 
cross validation, the evaluation is more objective and pre-
cise.

In addition, one of the important things about ma-
chine learning is optimising parameters, called hyper pa-
rameters, which cannot be learned directly. Each model 
can have many hyper parameters and finding the best 
combination of parameters can be considered a search 
problem. In this study, GridSearchCv was used to find the 
optimal combination.

4. Machine learning results and validation

The average accuracy score of K training times is listed 
in Table 2. Random forest achieved the highest score, fol-

lowed by support vector machine, K-nearest neighbours, 
and decision tree.

Similarly, the confusion matrix report system was also 
used in this study to evaluate the performance of each 
model. The confusion matrix is as follows:

According to the confusion matrix, random forest had 

 Figure 6. Sand thickness (two-way time) map by random forest (a) and decision tree (b).

Random forest 593 43
53 414  

K-nearest neighbours 588 48
60 407  

Support vector machine 593 43
76 391  

Decision tree 585 51
73 394  

Machine learning algorithm Average accuracy score 
Random forest 0.907 

Support vector machine 0.896 
K-nearest neighbours 0.895 

Decision tree 0.892 

Table 2. Average accuracy score

Table 3. Confusion matrix
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Figure 8. Correlation between machine learning cubes versus sand thickness at well location.

Figure 7. Sand thickness (two-way time) map by K-nearest neighbours (a) and support vector machine (b).
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the lowest total false prediction (false positive + false neg-
ative) results (96 errors), followed by K-nearest neighbours 
(108 errors), support vector machine (119 errors), and de-
cision tree (124 errors). Regarding, false positive, the most 
serious errors, random forest had the fewest number of 
errors (43 errors) and decision tree had the highest (51 er-
rors).

Properties and maps from four machine learning 
cubes (Figures 6 and 7) were also extracted at well loca-
tions to determine the relationship between actual well 
sand thickness and reservoir thickness from machine 
learning using a heat map based on Pandas correlation 
function (Figure 8). The correlation between well data and 
random forest cube was the highest (0.88) on the heat 
map, followed by K-nearest neighbours (0.76), decision 
tree (0.60), and support vector machine (0.43). It is likely 
that the random forest algorithm is the most dependable 
approach for this investigation.

5. Discussions and application

Attribute maps, which may be utilised as guidelines 
for property populations in 3D model, are one of the most 
notable contributions of seismic data. Normally, single 

Figure 9. Lambda-Rho attribute with threshold below 33 (as defined by seismic histogram).

Figure 10. VpVs attribute with threshold below 1.83 (as defined by seismic histogram).
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Figure 11. Mu-Rho attribute with threshold above 26 (as defined by seismic histogram).
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seismic attributes may give reasonable results around the 
drilled well areas but questionable for far away areas. For 
example, in our location, Lambda-Rho cut-off attributes 
(Figure 9) showed good results in the drilled area (X area), 
but lots of non-geological anomalies in far away areas, es-
pecially in the southern area. VpVs and Mu-Rho also had 
similar performance (Figures 10 and 11). Consequently, 
selecting the best attribute for further study in this case 
is very challenging and risky. Therefore, in our location, 
the combination between Lambda-Rho and Mu-Rho was 
used to minimise the potential risks (Figure 12a). How-
ever, this procedure itself requires high experience from 
the interpreters so the results seem to be very subjective. 
Furthermore, only Mu-Rho and Lambda-Rho were used in 
this combination while VpVs was not even though it could 
be very valuable in terms of geological meaning.

With machine learning workflow, the number of inte-
grated attributes can be more flexible, as long as data are 
correlated with each other. There are no subjective param-
eters used such as threshold cut-offs which seem to be 
very sensitive. On top of that, results from machine learn-
ing is very promising and reliable, for example, most of 

non-geological anomalies in the southern part (as shown 
on Lambda-Rho map), and northern part (as shown on 
Mu-Rho and VpVs maps) were not present in random for-
est map and the results in the drilled area (X) are still of 
high quality (Figure 12b).

6. Conclusions

The main conclusions of this study can be sum-
marised as follows:

-	 The traditional approach of using single seismic 
attribute such as Lambda-Rho, VpVs, or Mu-Rho for facies 
prediction leads to potential risks especially for remote 
areas without wells. Moreover, it highly depends on the 
experience of interpreters in selecting cut-off parameters;

The more advanced approach of combining seismic 
attributes can improve prediction accuracy but highly de-
pends on the experience of interpreters and sometimes 
cannot use all available data;

-	 Machine learning techniques such as random forest, 
decision tree, K-nearest neighbours, and support vector 
machine were used to overcome the disadvantages of 

Figure 12. Lambda-Rho - Mu-Rho cross-plot attribute (a) and random forest results (b).
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traditional approaches by analysing all input parameters 
objectively. The study successfully classified facies from 
each other;

-	 Random forest was found to be the most 
dependable method for the study area;

-	 The results from machine learning are of very high 
quality and can be used for HIIP calculation and 3D static 
modelling.
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